Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Res ; 34(3): 187-188, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37864057

Assuntos
COVID-19 , Humanos
2.
Nat Commun ; 14(1): 7385, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968313

RESUMO

Infections and vaccines can induce enhanced long-term responses in innate immune cells, establishing an innate immunological memory termed trained immunity. Here, we show that monocytes with a trained immunity phenotype, due to exposure to the Bacillus Calmette-Guérin (BCG) vaccine, are characterized by an increased biosynthesis of different lipid mediators (LM) derived from long-chain polyunsaturated fatty acids (PUFA). Pharmacological and genetic approaches show that long-chain PUFA synthesis and lipoxygenase-derived LM are essential for the BCG-induced trained immunity responses of human monocytes. Furthermore, products of 12-lipoxygenase activity increase in monocytes of healthy individuals after BCG vaccination. Grasping the underscoring lipid metabolic pathways contributes to our understanding of trained immunity and may help to identify therapeutic tools and targets for the modulation of innate immune responses.


Assuntos
Vacina BCG , Imunidade Treinada , Humanos , Imunidade Inata , Lipoxigenases , Lipídeos
3.
Cell Rep ; 42(6): 112658, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37330914

RESUMO

Itaconate is an immunomodulatory metabolite produced by immune cells under microbial stimulation and certain pro-inflammatory conditions and triggers antioxidant and anti-inflammatory responses. We show that dimethyl itaconate, a derivative of itaconate previously linked to suppression of inflammation and widely employed as an alternative to the endogenous metabolite, can induce long-term transcriptional, epigenomic, and metabolic changes, characteristic of trained immunity. Dimethyl itaconate alters glycolytic and mitochondrial energetic metabolism, ultimately leading to increased responsiveness to microbial ligand stimulation. Subsequently, mice treated with dimethyl itaconate present increased survival to infection with Staphylococcus aureus. Additionally, itaconate levels in human plasma correlate with enhanced ex vivo pro-inflammatory cytokine production. Collectively, these findings demonstrate that dimethyl itaconate displays short-term anti-inflammatory characteristics and the capacity to induce long-term trained immunity. This pro-and anti-inflammatory dichotomy of dimethyl itaconate is likely to induce complex immune responses and should be contemplated when considering itaconate derivatives in a therapeutic context.


Assuntos
Imunidade Inata , Macrófagos , Camundongos , Humanos , Animais , Macrófagos/metabolismo , Anti-Inflamatórios/metabolismo
4.
Clin Exp Immunol ; 208(2): 158-166, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35641161

RESUMO

Fungal infections affect over a billion people and are responsible for more than 1.5 million deaths each year. Despite progress in diagnostic and therapeutic approaches, the management of severe fungal infections remains a challenge. Recently, the reprogramming of cellular metabolism has emerged as a central mechanism through which the effector functions of immune cells are supported to promote antifungal activity. An improved understanding of the immunometabolic signatures that orchestrate antifungal immunity, together with the dissection of the mechanisms that underlie heterogeneity in individual immune responses, may therefore unveil new targets amenable to adjunctive host-directed therapies. In this review, we highlight recent advances in the metabolic regulation of host-fungus interactions and antifungal immune responses, and outline targetable pathways and mechanisms with promising therapeutic potential.


Assuntos
Antifúngicos , Micoses , Antifúngicos/uso terapêutico , Humanos , Imunoterapia , Micoses/tratamento farmacológico
5.
J Leukoc Biol ; 111(1): 9-17, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596266

RESUMO

Trained immunity is a de facto memory of innate immune cells, resulting in a long-term increase in innate host defense mechanisms after infection. The long-term heterologous protection conferred by trained immunity is mediated through epigenetic and functional reprogramming of hematopoietic stem and progenitor cells. Because the spleen is a reservoir of undifferentiated monocytes and is considered the prime organ for extramedullary hematopoiesis, we investigated the role of the spleen in the establishment of trained immunity. A ß-glucan-induced trained immunity mouse model was performed in previously sham-operated or splenectomized animals. Removal of the spleen did not modulate the proinflammatory cytokine production of in vivo trained peritoneal cells, nor did it ablate the increased percentage of proinflammatory circulatory monocytes and natural killer cells seen in trained animals. However, spleen removal prevented neutrophilia, an important characteristic of trained immunity. These data point to a limited role of the spleen in trained immunity. The pathophysiologic relevance of the spleen in the induction of neutrophilia during trained immunity remains to be fully explored.


Assuntos
Imunidade Inata , Neutrófilos/imunologia , Baço/imunologia , Animais , Células Cultivadas , Feminino , Inflamação/imunologia , Transtornos Leucocíticos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , beta-Glucanas/imunologia
6.
Immunometabolism ; 3(3): e210025, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267957

RESUMO

Following brief exposure to endogenous atherogenic particles, such as oxidized low-density lipoprotein (oxLDL), monocytes/macrophages can adopt a long-term pro-inflammatory phenotype, which is called trained immunity. This mechanism might contribute to the chronic low-grade inflammation that characterizes atherosclerosis. In this study, we aim to elucidate immunometabolic pathways that drive oxLDL-induced trained immunity. Primary isolated human monocytes were exposed to oxLDL for 24 h, and after five days stimulated with LPS to measure the cytokine production capacity. RNA-sequencing revealed broad increases in genes enriched in mitochondrial pathways after 24 h of oxLDL exposure. Further omics profiling of oxLDL-trained macrophages via intracellular metabolomics showed an enrichment for tricarboxylic acid (TCA) cycle metabolites. Single cell analysis revealed that oxLDL-trained macrophages contain larger mitochondria, potentially likely linked to increased oxidative phosphorylation (OXPHOS) activity. Co-incubation with pharmacological blockers of OXPHOS inhibited oxLDL-induced trained immunity. The relevance of OXPHOS was confirmed in a cohort of 243 healthy subjects showing that genetic variation in genes coding for enzymes relevant to OXPHOS correlated with the capacity of monocytes to be trained with oxLDL. Interestingly, OXPHOS appears to play an important role in the increased cytokine hyperresponsiveness by oxLDL-trained macrophages. The TCA-cycle can also be fuelled by glutamine and free fatty acids, and pharmacological blockade of these pathways could prevent oxLDL-induced trained immunity. This study demonstrates that the mitochondria of oxLDL-trained macrophages undergo changes to their function and form with OXPHOS being an important mechanism for trained immunity, which could unveil novel pharmacological targets to prevent atherogenesis.

7.
Cells ; 10(5)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919212

RESUMO

The innate immune system displays heterologous memory characteristics, which are characterized by stronger responses to a secondary challenge. This phenomenon termed trained immunity relies on epigenetic and metabolic rewiring of innate immune cells. As reactive oxygen species (ROS) production has been associated with the trained immunity phenotype, we hypothesized that the increased ROS levels and the main intracellular redox molecule glutathione play a role in the induction of trained immunity. Here we show that pharmacological inhibition of ROS in an in vitro model of trained immunity did not influence cell responsiveness; the modulation of glutathione levels reduced pro-inflammatory cytokine production in human monocytes. Single nucleotide polymorphisms (SNPs) in genes involved in glutathione metabolism were found to be associated with changes in pro-inflammatory cytokine production capacity upon trained immunity. Also, plasma glutathione concentrations were positively associated with ex vivo IL-1ß production, a biomarker of trained immunity, produced by monocytes of BCG-vaccinated individuals. In conclusion, glutathione metabolism is involved in the induction of trained immunity, and future studies are warranted to explore its functional consequences in human diseases.


Assuntos
Citocinas/imunologia , Glutationa/metabolismo , Doenças do Sistema Imunitário/imunologia , Imunidade Inata , Memória Imunológica , Espécies Reativas de Oxigênio/imunologia , Células Cultivadas , Humanos , Monócitos
8.
STAR Protoc ; 2(1): 100365, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33718890

RESUMO

A growing number of studies show that innate immune cells can undergo functional reprogramming, facilitating a faster and enhanced response to heterologous secondary stimuli. This concept has been termed "trained immunity." We outline here a protocol to recapitulate this in vitro using adherent monocytes from consecutive isolation of peripheral blood mononuclear cells. The induction of trained immunity and the associated functional reprogramming of monocytes is described in detail using ß-glucan (from Candida albicans) and Bacillus Calmette-Guérin as examples. For complete details on the use and execution of this protocol, please refer to Repnik et al. (2003) and Bekkering et al. (2016).


Assuntos
Técnicas de Reprogramação Celular/métodos , Imunidade Inata/imunologia , Reprogramação Celular/fisiologia , Citocinas/imunologia , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/fisiologia , Monócitos/fisiologia , Mycobacterium bovis/fisiologia , beta-Glucanas/farmacologia
9.
Clin Transl Immunology ; 10(2): e1253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708384

RESUMO

OBJECTIVES: Histone methyltransferase G9a, also known as Euchromatic Histone Lysine Methyltransferase 2 (EHMT2), mediates H3K9 methylation which is associated with transcriptional repression. It possesses immunomodulatory effects and is overexpressed in multiple types of cancer. In this study, we investigated the role of G9a in the induction of trained immunity, a de facto innate immune memory, and its effects in non-muscle-invasive bladder cancer (NMIBC) patients treated with intravesical Bacillus Calmette-Guérin (BCG). METHODS: EHMT2 expression was assessed upon induction of trained immunity by RNA sequencing and Western blotting. G9a inhibitor BIX-01294 was used to investigate the effect on trained immunity responses in vitro. Subsequent cytokine production was measured by ELISA, epigenetic modifications were measured by ChIP-qPCR, Seahorse technology was used to measure metabolic changes, and a luminescence assay was used to measure ROS release. RNA sequencing was performed on BIX-01294-treated monocytes ex vivo. RESULTS: The expression of EHMT2 mRNA and protein decreased in monocytes during induction of trained immunity. G9a inhibition by BIX-01294 induced trained immunity and amplified trained immunity responses evoked by various microbial ligands in vitro. This was accompanied by decreased H3K9me2 at the promoters of pro-inflammatory genes. G9a inhibition was also associated with amplified ex vivo trained immunity responses in circulating monocytes of NMIBC patients. Additionally, altered RNA expression of inflammatory genes in monocytes of NMIBC patients was observed upon ex vivo G9a inhibition. Furthermore, intravesical BCG therapy decreased H3K9me2 at the promoter of pro-inflammatory genes. CONCLUSION: Inhibition of G9a is important in the induction of trained immunity, and G9a may represent a novel therapeutic target in NMIBC patients.

10.
Ticks Tick Borne Dis ; 12(2): 101611, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33360386

RESUMO

Antigen presentation is a crucial innate immune cell function that instructs adaptive immune cells. Loss of this pathway severely impairs the development of adaptive immune responses. To investigate whether B. burgdorferi sensu lato. spirochetes modulate the induction of an effective immune response, primary human PBMCs were isolated from healthy volunteers and stimulated with B. burgdorferi s.l. Through cell entry, TNF receptor I, and RIP1 signaling cascades, B. burgdorferi s.l. strongly downregulated genes and proteins involved in antigen presentation, specifically HLA-DM, MHC class II and CD74. Antigen presentation proteins were distinctively inhibited in monocyte subsets, monocyte-derived macrophages, and dendritic cells. When compared to a range of other pathogens, B. burgdorferi s.l.-induced suppression of antigen presentation appears to be specific. Inhibition of antigen presentation interfered with T-cell recognition of B. burgdorferi s.l., and memory T-cell responses against Candidaalbicans. Re-stimulation of PBMCs with the commensal microbe C.albicans following B. burgdorferi s.l. exposure resulted in significantly reduced IFN-γ, IL-17 and IL-22 production. These findings may explain why patients with Lyme borreliosis develop delayed adaptive immune responses. Unravelling the mechanism of B. burgdorferi s.l.-induced inhibition of antigen presentation, via cell entry, TNF receptor I, and RIP1 signaling cascades, explains the difficulty to diagnose the disease based on serology and to obtain an effective vaccine against Lyme borreliosis.


Assuntos
Apresentação de Antígeno/imunologia , Grupo Borrelia Burgdorferi/fisiologia , Candida albicans/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/imunologia , Proteínas de Ligação a RNA/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Humanos
11.
PLoS Pathog ; 16(4): e1008404, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32240273

RESUMO

Among infectious diseases, tuberculosis is the leading cause of death worldwide, and represents a serious threat, especially in developing countries. The protective effects of Bacillus Calmette-Guerin (BCG), the current vaccine against tuberculosis, have been related not only to specific induction of T-cell immunity, but also with the long-term epigenetic and metabolic reprogramming of the cells from the innate immune system through a process termed trained immunity. Here we show that MTBVAC, a live attenuated strain of Mycobacterium tuberculosis, safe and immunogenic against tuberculosis antigens in adults and newborns, is also able to generate trained immunity through the induction of glycolysis and glutaminolysis and the accumulation of histone methylation marks at the promoters of proinflammatory genes, facilitating an enhanced response after secondary challenge with non-related bacterial stimuli. Importantly, these findings in human primary myeloid cells are complemented by a strong MTBVAC-induced heterologous protection against a lethal challenge with Streptococcus pneumoniae in an experimental murine model of pneumonia.


Assuntos
Modelos Animais de Doenças , Imunidade Inata/imunologia , Monócitos/imunologia , Mycobacterium tuberculosis/imunologia , Pneumonia/prevenção & controle , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose/prevenção & controle , Animais , Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Células Cultivadas , Reprogramação Celular , Feminino , Humanos , Imunidade Inata/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Pneumonia/imunologia , Pneumonia/microbiologia , Tuberculose/imunologia , Tuberculose/microbiologia , Vacinação
13.
Eur J Immunol ; 49(11): 2044-2050, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31206650

RESUMO

Changes in the epigenetic landscape of immune cells are a crucial component of gene activation during the induction of inflammatory responses, therefore it has been hypothesized that epigenetic modulation could be employed to restore homeostasis in inflammatory scenarios. Fungal pathogens cause a large burden of morbidity and even mortality due to the hyperinflammatory processes that induce mucosal, allergic or systemic infections. Bromodomain and extraterminal domain (BET) proteins are considered as one as the most tantalizing pharmacological targets for the modulation of inflammatory responses at the epigenetic level. Nothing is known of the role of BET inhibitors on the inflammation induced by fungal pathogens. In the present study, we assessed the in vitro efficacy of the small molecular histone mimic BET inhibitor I-BET151 to modulate innate immune responses during fungal-immune interaction with the clinically relevant fungal pathogens Candida albicans and Aspergillus fumigatus. Our results prove that BET inhibitors (I-BETs) represent an important modulator of inflammation induced by fungal pathogens: both direct production of proinflammatory cytokines and the induction of trained immunity were inhibited by I-BET151. These modulatory effects are likely to have important potential implications in clinically relevant situations.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Monócitos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/patogenicidade , Candida albicans/imunologia , Candida albicans/patogenicidade , Endocitose/efeitos dos fármacos , Endocitose/genética , Endocitose/imunologia , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/antagonistas & inibidores , Interleucina-6/genética , Interleucina-6/imunologia , Interleucinas/genética , Interleucinas/imunologia , Monócitos/imunologia , Monócitos/microbiologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Cultura Primária de Células , Transdução de Sinais , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...